
Resit Exam — Ordinary Differential Equations (WIGDV–07)

Thursday 1 February 2018, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (12 points)

Solve the following initial value problem:

x2y′ = (x− y)y, y(1) = 1.

Problem 2 (2 + 5 + 6 = 13 points)

Consider the following differential equation:

(y2 + xy + 1) dx+ (x2 + xy + 1) dy = 0.

(a) Show that the equation is not exact.

(b) Compute an integrating factor of the form M(x, y) = φ(xy).

(c) Compute the general solution in implicit form.

Problem 3 (4 + 7 + 9 = 20 points)

Consider the following initial value problem:

y′ = A(t)y + b(t), y(τ) = η, (∗)

where A(t) is a n× n matrix.

(a) When do we call Y (t) a fundamental matrix for the homogeneous equation?

(b) Use variation of constants to prove that the solution of (∗) is given by

y(t) = Y (t)Y (τ)−1
η + Y (t)

∫ t

τ

Y (s)−1b(s) ds.

(c) Compute a real fundamental matrix in the case A =

[

−5 15
−3 7

]

.
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Problem 4 (10 + 4 + 6 = 20 points)

The space C([0, 1]) =
{

y : [0, 1] → R : y is continuous
}

provided with the norm

‖y‖ = sup
x∈[0,1]

|y(x)|e−αx where α > 0,

is a Banach space. Consider the following operator:

T : C([0, 1]) → C([0, 1]), (Ty)(x) =

∫ x

0

f(y(t)) dt,

where the function f : R → R satisfies:

|f(s)− f(t)| ≤ β|s− t| for all s, t ∈ R (β > 0).

(a) Prove that for all y, z ∈ C([0, 1]) we have

‖Ty − Tz‖ ≤ βL‖y − z‖ where L = sup
x∈[0,1]

∫ x

0

eα(t−x)dt.

(b) Formulate Banach’s fixed point theorem.

(c) Prove that there exists a value of α > 0 such that Banach’s fixed point theorem
can be applied.

Problem 5 (10 points)

Compute the general solution of the following 3rd order equation:

2u′′′ + 6u′′ − 18u′ + 10u = 16 + 26t− 10t2.

Problem 6 (5 + 5 + 5 = 15 points)

Consider the following semi-homogeneous boundary value problem:

xu′′ + u′ + λu = f(x), x ∈ [1, e], u(1) = 0, u(e) = 0,

where λ ∈ R is a parameter and f : [1, e] → R is a continuous function.

(a) Show that λ = 0 is not an eigenvalue of the homogeneous boundary value
problem.

(b) Compute for λ = 0 the Green’s function Γ(x, ξ).

(c) Solve the boundary value problem for λ = 0 and f(x) = 1.

End of test (90 points)

— Page 2 of 10 —



Solution of problem 1 (12 points)

We can rewrite the equation as

y′ =

(

1−
y

x

)

y

x
.

Using the transformation u = y/x gives y = xu so that

u+ xu′ = (1− u)u ⇔ u′ = −
u2

x
.

(4 points)

The equation for u can be solved by separation of variables:

∫

−
1

u2
du =

∫

1

x
dx ⇒

1

u
= log |x|+ C ⇒ u =

1

log |x|+ C
.

(4 points)

Hence, the solution of the differential equation for y is

y =
x

log |x|+ C
.

(2 points)

The initial condition y(1) = 1 gives C = 1.

(2 points)
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Solution of problem 2 (2 + 5 + 6 = 13 points)

(a) Let g = y2 + xy + 1 and h = x2 + xy + 1, then gy = 2y + x and hx = 2x + y.
Since gy 6= hx the equation is not exact.

(2 points)

(b) The function M(x, y) = φ(xy) is an integrating factor if and only if

(φg)y = (φh)x ⇔ φ(xy)gy + xφ′(xy)g = φ(xy)hx + yφ′(xy)h

⇔ φ′(xy) =
hx − gy
xg − yh

φ(xy)

⇔ φ′(xy) = φ(xy).

An obvious solution to this differential equation is φ(xy) = exy.
(5 points)

(c) Define the function

F (x, y) =

∫

φ(x, y)g(x, y) dx =

∫

exy(y2 + xy + 1) dx = (x+ y)exy + C(y).

Now we have Fx = φg by construction.

(3 points)

Demanding that Fy = φh gives

exy(x2 + xy + 1) + C ′(y) = exy(x2 + xy + 1),

which implies that C(y) has to be a constant function. For simplicity we take
C(y) = 0.

(2 points)

The general solution of the differential equation is given by

(x+ y)exy = K,

where K is an arbitrary constant.

(1 point)
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Solution of problem 3 (4 + 7 + 9 = 20 points)

(a) The matrix function Y : R → R
n×n is called a fundamental matrix for (∗) if the

following two conditions are satisfied:

(i) Each column of Y (t) satisfies the homogenous equation y′ = A(t)y.
(Equivalent: the matrix Y (t) satisfies Y ′ = A(t)Y .)

(2 points)

(ii) The columns of Y (t) are linearly independent.
(Equivalent: the matrix det Y (t) 6= 0.)

(2 points)

(b) If Y (t) is a fundamental matrix for (∗), then we can find a solution of the inhomo-
geneous differential equation by variation of constants. Let yp(t) = Y (t)v(t),
then on the one hand we have

y′

p = Y ′v + Y v′ = AY v + Y v′.

(2 points)

On the other hand we want to have

y′

p = Ayp + b = AY v + b

(2 points)

Therefore we have

Y v′ = b ⇒ v(t) =

∫ t

τ

Y (s)−1b(s) ds,

where we have chosen a specific antiderivative which satisfies v(τ) = 0.

(2 points)

The general solution of the differential equation is

y(t) = Y (t)c+ Y (t)

∫ t

τ

Y (s)−1b(s) ds,

where c ∈ R
n is an arbitrary vector. From the initial condition y(τ) = η it

follows that c = Y (τ)−1
η.

(1 point)

(c) The eigenvalues of A are given by the roots of the polynomial

det(A− λI) =

[

−5 − λ 15
−3 7− λ

]

= λ2 − 2λ+ 10 = (λ− 1)2 + 9

Therefore, the eigenvalues are given by λ = 1± 3i.

(3 points)

For λ = 1 + 3i we have

A− λI =

[

−6− 3i 15
−3 6− 3i

]

∼

[

−2− i 5
−1 2− i

]
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Clearly, v =
[

5 2 + i
]⊤

is an eigenvector.

(3 points)

This gives the solution

y(t) =

[

5
2 + i

]

et(cos(3t) + i sin(3t)).

(1 point)

Hence, a real fundamental matrix is given by

Y (t) =
[

Rey(t) Im y(t)
]

= et
[

5 cos(3t) 5 sin(3t)
2 cos(3t)− sin(3t) cos(3t) + 2 sin(3t)

]

.

(2 points)
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Solution of problem 4 (10 + 4 + 6 = 20 points)

(a) If y, z ∈ C([0, 1]) and x ∈ [0, 1], then

|(Ty)(x)− (Tz)(x)| =

∣

∣

∣

∣

∫ x

0

f(y(t))− f(z(t)) dt

∣

∣

∣

∣

≤

∫ x

0

|f(y(t))− f(z(t))| dt

≤

∫ x

0

2|y(t)− z(t)| dt

=

∫ x

0

2|y(t)− z(t)|e−αteαt dt.

(4 points)

Since |y(t)− z(t)|e−αt ≤ ‖y − z‖ for all t ∈ [0, 1] we get

|(Ty)(x)− (Tz)(x)| ≤ 2‖y − z‖

∫ a

0

eαt dt

(3 points)

After multiplication by e−αx we get

|(Ty)(x)− (Tz)(x)|e−αx ≤ 2‖y − z‖

∫ x

0

eα(t−x) dt.

(2 points)

Since this inequality holds for all x ∈ [0, 1] we can take the supremum on both
sides, which gives

‖Ty − Tz‖ ≤ 2L‖y − z‖ where L = sup
x∈[0,1]

∫ x

0

eα(t−x) dt.

(1 point)

(b) Let D be a closed, nonempty subset in a Banach space B. Let the operator T :
D → B map D into itself, i.e., T (D) ⊂ D, and assume that T is a contraction:
there exists a number 0 < q < 1 such that

‖Tx− Ty‖ ≤ q‖x− y‖, ∀ x, y ∈ D,

Then the fixed point equation Tx = x has precisely one solution x̄ ∈ D.
(4 points)

Moreover, iterations of T converge to this fixed point:

x0 ∈ D, xn+1 = Txn ⇒ lim
n→∞

xn = x̄.

(The last statement is not relevant to this problem.)
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(c) The value of L is given by

L = sup
x∈[0,1]

1− e−αx

α
=

1− e−α

α
,

where we have used that the function of which we take the supremum is strictly
increasing in x.

(3 points)

For applying Banach’s fixed point theorem we need to have βL < 1, or, equi-
valently,

1− e−α <
α

β
.

Note that 0 < 1 − e−α < 1 for all α > 0. Hence, by taking α ≥ β the above
inequality is satisfied.

(3 points)
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Solution of problem 5 (10 points)

Substitution of u = eλt in the homogeneous differential equation gives the following
characteristic equation:

2λ3 + 6λ2 − 18λ+ 10 = 0

Clearly, λ = 1 is a root. A long division then gives

2λ3 + 6λ2 − 18λ+ 10

λ− 1
= 2λ2 + 8λ− 10 = 2(λ− 1)(λ+ 5).

Therefore, the roots of the characteristic equation are λ = 1 (with multiplicity 2)
and λ = −5 (with multiplicity 1).

(4 points)

The general solution of the homogeneous equation is given by

u(t) = aet + btet + ce−5t,

where a, b, and c are arbitrary constants.

(1 point)

As a particular solution we use the Ansatz up = A+Bt + Ct2, which gives

u′

p = B + 2Ct

u′′

p = 2C

u′′′

p = 0

Substitution in the differential equation gives

10A− 18B + 12C + (10B − 36C)t+ 10Ct2 = 16 + 26t− 10t2.

Comparing coefficients gives A = 1, B = −1, and C = −1.

(4 points)

Hence, the general solution of the inhomogeneous differential equation is given by

u(t) = aet + btet + ce−5t + 1− t− t2,

where a, b, and c are arbitrary constants.

(1 point)
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Solution of problem 6 (5 + 5 + 5 = 15 points)

(a) For λ = 0 the homogeneous differential equation can be solved as follows:

xu′′ + u′ = 0 ⇒ (xu′)′ = 0 ⇒ xu′ = a ⇒ u′ =
a

x
⇒ u = a log(x) + b.

where a and b are arbitrary constants. (Note that we can omit the absolute
values in the logarithm since x > 0.)

(3 points)

The boundary conditions imply that a = b = 0, which means that the homo-
geneous equation for λ = 0 only has the trivial solution. Therefore, λ = 0 is not
and eigenvalue.

(2 points)

Note. the equation can also be solved by first multiplying by x. Then we get an
Euler equation which can be solved by the Ansatz u = xp, which gives p2 = 0.
This gives one constant solution; the other can be found using reduction of
order, but this gives again the original equation!

(b) The function u1(x) = log(x) satisfies the boundary condition u(1) = 0, and the
function u2(x) = log(x)− 1 satisfies the boundary condition u(e) = 0.
(2 points)

The Wronskian determinant of u1 and u2 is given by

W = u1u
′

2 − u′

1u2 = log(x) ·
1

x
−

1

x
· (log(x)− 1) =

1

x
.

Since the coefficient of u′′ is p(x) = x it follows that p(ξ)W (ξ) = 1 so that the
Green’s function is given by

Γ(x, ξ) =







log(ξ)(log(x)− 1) if 1 ≤ ξ ≤ x ≤ e,

log(x)(log(ξ)− 1) if 1 ≤ x ≤ ξ ≤ e.

(3 points)

(c) The solution is given by

u(x) =

∫ e

1

Γ(x, ξ)f(ξ) dξ

=

∫ x

1

Γ(x, ξ)f(ξ) dξ +

∫ e

x

Γ(x, ξ)f(ξ) dξ

= (log(x)− 1)

∫ x

1

log(ξ) dξ + log(x)

∫ e

x

log(ξ)− 1 dξ

= (log(x)− 1)
[

− ξ + ξ log(ξ)
]x

1
+ log(x)

[

− 2ξ + ξ log(ξ)
]e

x

= (log(x)− 1)(1− x+ x log(x)) + log(x)(−e + 2x− x log(x)).

(5 points)
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