Resit Exam - Ordinary Differential Equations (WIGDV-07)

Thursday 1 February 2018, 14.00h-17.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem 1 (12 points)

Solve the following initial value problem:

$$
x^{2} y^{\prime}=(x-y) y, \quad y(1)=1 .
$$

Problem $2(2+5+6=13$ points $)$
Consider the following differential equation:

$$
\left(y^{2}+x y+1\right) d x+\left(x^{2}+x y+1\right) d y=0 .
$$

(a) Show that the equation is not exact.
(b) Compute an integrating factor of the form $M(x, y)=\phi(x y)$.
(c) Compute the general solution in implicit form.

Problem $3(4+7+9=20$ points $)$
Consider the following initial value problem:

$$
\begin{equation*}
\mathbf{y}^{\prime}=A(t) \mathbf{y}+\mathbf{b}(t), \quad \mathbf{y}(\tau)=\boldsymbol{\eta} \tag{*}
\end{equation*}
$$

where $A(t)$ is a $n \times n$ matrix.
(a) When do we call $Y(t)$ a fundamental matrix for the homogeneous equation?
(b) Use variation of constants to prove that the solution of $(*)$ is given by

$$
\mathbf{y}(t)=Y(t) Y(\tau)^{-1} \boldsymbol{\eta}+Y(t) \int_{\tau}^{t} Y(s)^{-1} \mathbf{b}(s) d s
$$

(c) Compute a real fundamental matrix in the case $A=\left[\begin{array}{rr}-5 & 15 \\ -3 & 7\end{array}\right]$.

Problem $4(10+4+6=20$ points $)$

The space $C([0,1])=\{y:[0,1] \rightarrow \mathbb{R}: y$ is continuous $\}$ provided with the norm

$$
\|y\|=\sup _{x \in[0,1]}|y(x)| e^{-\alpha x} \quad \text { where } \quad \alpha>0
$$

is a Banach space. Consider the following operator:

$$
T: C([0,1]) \rightarrow C([0,1]), \quad(T y)(x)=\int_{0}^{x} f(y(t)) d t
$$

where the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies:

$$
|f(s)-f(t)| \leq \beta|s-t| \quad \text { for all } \quad s, t \in \mathbb{R} \quad(\beta>0)
$$

(a) Prove that for all $y, z \in C([0,1])$ we have

$$
\|T y-T z\| \leq \beta L\|y-z\| \quad \text { where } \quad L=\sup _{x \in[0,1]} \int_{0}^{x} e^{\alpha(t-x)} d t .
$$

(b) Formulate Banach's fixed point theorem.
(c) Prove that there exists a value of $\alpha>0$ such that Banach's fixed point theorem can be applied.

Problem 5 (10 points)

Compute the general solution of the following 3rd order equation:

$$
2 u^{\prime \prime \prime}+6 u^{\prime \prime}-18 u^{\prime}+10 u=16+26 t-10 t^{2} .
$$

Problem $6(5+5+5=15$ points $)$
Consider the following semi-homogeneous boundary value problem:

$$
x u^{\prime \prime}+u^{\prime}+\lambda u=f(x), \quad x \in[1, e], \quad u(1)=0, \quad u(e)=0,
$$

where $\lambda \in \mathbb{R}$ is a parameter and $f:[1, e] \rightarrow \mathbb{R}$ is a continuous function.
(a) Show that $\lambda=0$ is not an eigenvalue of the homogeneous boundary value problem.
(b) Compute for $\lambda=0$ the Green's function $\Gamma(x, \xi)$.
(c) Solve the boundary value problem for $\lambda=0$ and $f(x)=1$.

End of test (90 points)

Solution of problem 1 (12 points)
We can rewrite the equation as

$$
y^{\prime}=\left(1-\frac{y}{x}\right) \frac{y}{x} .
$$

Using the transformation $u=y / x$ gives $y=x u$ so that

$$
u+x u^{\prime}=(1-u) u \quad \Leftrightarrow \quad u^{\prime}=-\frac{u^{2}}{x}
$$

(4 points)

The equation for u can be solved by separation of variables:

$$
\int-\frac{1}{u^{2}} d u=\int \frac{1}{x} d x \Rightarrow \frac{1}{u}=\log |x|+C \quad \Rightarrow \quad u=\frac{1}{\log |x|+C}
$$

(4 points)

Hence, the solution of the differential equation for y is

$$
y=\frac{x}{\log |x|+C} .
$$

(2 points)

The initial condition $y(1)=1$ gives $C=1$.
(2 points)

Solution of problem $2(2+5+6=13$ points $)$
(a) Let $g=y^{2}+x y+1$ and $h=x^{2}+x y+1$, then $g_{y}=2 y+x$ and $h_{x}=2 x+y$. Since $g_{y} \neq h_{x}$ the equation is not exact.
(2 points)
(b) The function $M(x, y)=\phi(x y)$ is an integrating factor if and only if

$$
\begin{aligned}
(\phi g)_{y}=(\phi h)_{x} & \Leftrightarrow \phi(x y) g_{y}+x \phi^{\prime}(x y) g=\phi(x y) h_{x}+y \phi^{\prime}(x y) h \\
& \Leftrightarrow \phi^{\prime}(x y)=\frac{h_{x}-g_{y}}{x g-y h} \phi(x y) \\
& \Leftrightarrow \phi^{\prime}(x y)=\phi(x y) .
\end{aligned}
$$

An obvious solution to this differential equation is $\phi(x y)=e^{x y}$.
(5 points)
(c) Define the function

$$
F(x, y)=\int \phi(x, y) g(x, y) d x=\int e^{x y}\left(y^{2}+x y+1\right) d x=(x+y) e^{x y}+C(y) .
$$

Now we have $F_{x}=\phi g$ by construction.

(3 points)

Demanding that $F_{y}=\phi h$ gives

$$
e^{x y}\left(x^{2}+x y+1\right)+C^{\prime}(y)=e^{x y}\left(x^{2}+x y+1\right)
$$

which implies that $C(y)$ has to be a constant function. For simplicity we take $C(y)=0$.

(2 points)

The general solution of the differential equation is given by

$$
(x+y) e^{x y}=K
$$

where K is an arbitrary constant.
(1 point)

Solution of problem $3(4+7+9=20$ points $)$
(a) The matrix function $Y: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is called a fundamental matrix for $(*)$ if the following two conditions are satisfied:
(i) Each column of $Y(t)$ satisfies the homogenous equation $\mathbf{y}^{\prime}=A(t) \mathbf{y}$. (Equivalent: the matrix $Y(t)$ satisfies $Y^{\prime}=A(t) Y$.)
(2 points)
(ii) The columns of $Y(t)$ are linearly independent.
(Equivalent: the matrix $\operatorname{det} Y(t) \neq 0$.)
(2 points)
(b) If $Y(t)$ is a fundamental matrix for $(*)$, then we can find a solution of the inhomogeneous differential equation by variation of constants. Let $\mathbf{y}_{p}(t)=Y(t) \mathbf{v}(t)$, then on the one hand we have

$$
\mathbf{y}_{p}^{\prime}=Y^{\prime} \mathbf{v}+Y \mathbf{v}^{\prime}=A Y \mathbf{v}+Y \mathbf{v}^{\prime}
$$

(2 points)

On the other hand we want to have

$$
\mathbf{y}_{p}^{\prime}=A \mathbf{y}_{p}+\mathbf{b}=A Y \mathbf{v}+\mathbf{b}
$$

(2 points)
Therefore we have

$$
Y \mathbf{v}^{\prime}=\mathbf{b} \quad \Rightarrow \quad \mathbf{v}(t)=\int_{\tau}^{t} Y(s)^{-1} \mathbf{b}(s) d s
$$

where we have chosen a specific antiderivative which satisfies $\mathbf{v}(\tau)=\mathbf{0}$.

(2 points)

The general solution of the differential equation is

$$
\mathbf{y}(t)=Y(t) \mathbf{c}+Y(t) \int_{\tau}^{t} Y(s)^{-1} \mathbf{b}(s) d s
$$

where $\mathbf{c} \in \mathbb{R}^{n}$ is an arbitrary vector. From the initial condition $\mathbf{y}(\tau)=\boldsymbol{\eta}$ it follows that $\mathbf{c}=Y(\tau)^{-1} \boldsymbol{\eta}$.

(1 point)

(c) The eigenvalues of A are given by the roots of the polynomial

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{rr}
-5-\lambda & 15 \\
-3 & 7-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda+10=(\lambda-1)^{2}+9
$$

Therefore, the eigenvalues are given by $\lambda=1 \pm 3 i$.

(3 points)

For $\lambda=1+3 i$ we have

$$
A-\lambda I=\left[\begin{array}{rr}
-6-3 i & 15 \\
-3 & 6-3 i
\end{array}\right] \sim\left[\begin{array}{rr}
-2-i & 5 \\
-1 & 2-i
\end{array}\right]
$$

Clearly, $\mathbf{v}=\left[\begin{array}{ll}5 & 2+i\end{array}\right]^{\top}$ is an eigenvector.

(3 points)

This gives the solution

$$
\mathbf{y}(t)=\left[\begin{array}{c}
5 \\
2+i
\end{array}\right] e^{t}(\cos (3 t)+i \sin (3 t)) .
$$

(1 point)

Hence, a real fundamental matrix is given by

$$
Y(t)=\left[\begin{array}{ll}
\operatorname{Re} \mathbf{y}(t) & \operatorname{Im} \mathbf{y}(t)
\end{array}\right]=e^{t}\left[\begin{array}{cc}
5 \cos (3 t) & 5 \sin (3 t) \\
2 \cos (3 t)-\sin (3 t) & \cos (3 t)+2 \sin (3 t)
\end{array}\right] .
$$

(2 points)

Solution of problem $4(10+4+6=20$ points $)$
(a) If $y, z \in C([0,1])$ and $x \in[0,1]$, then

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} f(y(t))-f(z(t)) d t\right| \\
& \leq \int_{0}^{x}|f(y(t))-f(z(t))| d t \\
& \leq \int_{0}^{x} 2|y(t)-z(t)| d t \\
& =\int_{0}^{x} 2|y(t)-z(t)| e^{-\alpha t} e^{\alpha t} d t
\end{aligned}
$$

(4 points)

Since $|y(t)-z(t)| e^{-\alpha t} \leq\|y-z\|$ for all $t \in[0,1]$ we get

$$
|(T y)(x)-(T z)(x)| \leq 2\|y-z\| \int_{0}^{a} e^{\alpha t} d t
$$

(3 points)

After multiplication by $e^{-\alpha x}$ we get

$$
|(T y)(x)-(T z)(x)| e^{-\alpha x} \leq 2\|y-z\| \int_{0}^{x} e^{\alpha(t-x)} d t
$$

(2 points)

Since this inequality holds for all $x \in[0,1]$ we can take the supremum on both sides, which gives

$$
\|T y-T z\| \leq 2 L\|y-z\| \quad \text { where } \quad L=\sup _{x \in[0,1]} \int_{0}^{x} e^{\alpha(t-x)} d t .
$$

(1 point)

(b) Let D be a closed, nonempty subset in a Banach space B. Let the operator T : $D \rightarrow B$ map D into itself, i.e., $T(D) \subset D$, and assume that T is a contraction: there exists a number $0<q<1$ such that

$$
\|T x-T y\| \leq q\|x-y\|, \quad \forall x, y \in D
$$

Then the fixed point equation $T x=x$ has precisely one solution $\bar{x} \in D$.

(4 points)

Moreover, iterations of T converge to this fixed point:

$$
x_{0} \in D, \quad x_{n+1}=T x_{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n}=\bar{x} .
$$

(The last statement is not relevant to this problem.)
(c) The value of L is given by

$$
L=\sup _{x \in[0,1]} \frac{1-e^{-\alpha x}}{\alpha}=\frac{1-e^{-\alpha}}{\alpha}
$$

where we have used that the function of which we take the supremum is strictly increasing in x.

(3 points)

For applying Banach's fixed point theorem we need to have $\beta L<1$, or, equivalently,

$$
1-e^{-\alpha}<\frac{\alpha}{\beta}
$$

Note that $0<1-e^{-\alpha}<1$ for all $\alpha>0$. Hence, by taking $\alpha \geq \beta$ the above inequality is satisfied.
(3 points)

Solution of problem 5 (10 points)

Substitution of $u=e^{\lambda t}$ in the homogeneous differential equation gives the following characteristic equation:

$$
2 \lambda^{3}+6 \lambda^{2}-18 \lambda+10=0
$$

Clearly, $\lambda=1$ is a root. A long division then gives

$$
\frac{2 \lambda^{3}+6 \lambda^{2}-18 \lambda+10}{\lambda-1}=2 \lambda^{2}+8 \lambda-10=2(\lambda-1)(\lambda+5) .
$$

Therefore, the roots of the characteristic equation are $\lambda=1$ (with multiplicity 2) and $\lambda=-5$ (with multiplicity 1).

(4 points)

The general solution of the homogeneous equation is given by

$$
u(t)=a e^{t}+b t e^{t}+c e^{-5 t}
$$

where a, b, and c are arbitrary constants.

(1 point)

As a particular solution we use the Ansatz $u_{p}=A+B t+C t^{2}$, which gives

$$
\begin{aligned}
u_{p}^{\prime} & =B+2 C t \\
u_{p}^{\prime \prime} & =2 C \\
u_{p}^{\prime \prime \prime} & =0
\end{aligned}
$$

Substitution in the differential equation gives

$$
10 A-18 B+12 C+(10 B-36 C) t+10 C t^{2}=16+26 t-10 t^{2}
$$

Comparing coefficients gives $A=1, B=-1$, and $C=-1$.

(4 points)

Hence, the general solution of the inhomogeneous differential equation is given by

$$
u(t)=a e^{t}+b t e^{t}+c e^{-5 t}+1-t-t^{2},
$$

where a, b, and c are arbitrary constants.

(1 point)

Solution of problem $6(5+5+5=15$ points)
(a) For $\lambda=0$ the homogeneous differential equation can be solved as follows:

$$
x u^{\prime \prime}+u^{\prime}=0 \Rightarrow\left(x u^{\prime}\right)^{\prime}=0 \Rightarrow x u^{\prime}=a \Rightarrow u^{\prime}=\frac{a}{x} \Rightarrow u=a \log (x)+b .
$$

where a and b are arbitrary constants. (Note that we can omit the absolute values in the logarithm since $x>0$.)
(3 points)
The boundary conditions imply that $a=b=0$, which means that the homogeneous equation for $\lambda=0$ only has the trivial solution. Therefore, $\lambda=0$ is not and eigenvalue.

(2 points)

Note. the equation can also be solved by first multiplying by x. Then we get an Euler equation which can be solved by the Ansatz $u=x^{p}$, which gives $p^{2}=0$. This gives one constant solution; the other can be found using reduction of order, but this gives again the original equation!
(b) The function $u_{1}(x)=\log (x)$ satisfies the boundary condition $u(1)=0$, and the function $u_{2}(x)=\log (x)-1$ satisfies the boundary condition $u(e)=0$.
(2 points)
The Wronskian determinant of u_{1} and u_{2} is given by

$$
W=u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}=\log (x) \cdot \frac{1}{x}-\frac{1}{x} \cdot(\log (x)-1)=\frac{1}{x} .
$$

Since the coefficient of $u^{\prime \prime}$ is $p(x)=x$ it follows that $p(\xi) W(\xi)=1$ so that the Green's function is given by

$$
\Gamma(x, \xi)= \begin{cases}\log (\xi)(\log (x)-1) & \text { if } 1 \leq \xi \leq x \leq e \\ \log (x)(\log (\xi)-1) & \text { if } 1 \leq x \leq \xi \leq e\end{cases}
$$

(3 points)

(c) The solution is given by

$$
\begin{aligned}
u(x) & =\int_{1}^{e} \Gamma(x, \xi) f(\xi) d \xi \\
& =\int_{1}^{x} \Gamma(x, \xi) f(\xi) d \xi+\int_{x}^{e} \Gamma(x, \xi) f(\xi) d \xi \\
& =(\log (x)-1) \int_{1}^{x} \log (\xi) d \xi+\log (x) \int_{x}^{e} \log (\xi)-1 d \xi \\
& =(\log (x)-1)[-\xi+\xi \log (\xi)]_{1}^{x}+\log (x)[-2 \xi+\xi \log (\xi)]_{x}^{e} \\
& =(\log (x)-1)(1-x+x \log (x))+\log (x)(-e+2 x-x \log (x)) .
\end{aligned}
$$

(5 points)

